论文阅读清单
神经网络基础(basis)
1
ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION
2015
2
Wide & Deep Learning for Recommender Systems
2016
3
Targeted Dropout
批量&正则化(batch&normalization)
1
Batch Normalization: Accelerating Deep Network Training b y Reducing Internal Covariate Shift
批量正则化论文
2015
2
Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models
ReNorm算法论文
2017
Instance Normalization: The Missing Ingredient for Fast Stylization
实例归一化论文
2017
3
Group Normalization
GroupNorm算法论文
2018
4
DIFFERENTIABLE LEARNING-TO-NORMALIZE VIA SWITCHABLE NORMALIZATION
SwitchableNorm算法论文
2019
注意力部分(attention)
1
Attention-Based Models for Speech Recognition
混合注意力机制论文
2015
2
Effective Approaches to Attention-based Neural Machine Translation
孪生注意力论文
2015
3
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
各自升级的孪生注意力论文
2016
4
NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE
孪生注意力论文
2016
5
Attention Is All You Need
大道至简的注意力论文
2017
6
Online and Linear-Time Attention by Enforcing Monotonic Alignments
单调注意力机制论文
2017
高级卷积网络知识(Convolutional)
1
Convolutional Neural Networks for Sentence Classification
卷积网络新玩法TextCNN模型
2014
2
MATRIX CAPSULES WITH EM ROUTING
矩阵胶囊网络与EM路由算法
3
Dynamic Routing Between Capsules
胶囊网络与动态路由的论文
2017
4
Information Aggregation via Dynamic Routing for Sequence Encoding
胶囊网络的其它用处
2018
循环神经网络(RNN)
1
QUASI-RECURRENT NEURAL NETWORKS
QRNN
2016
2
Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN
IndRNN
2018
3
THE UNREASONABLE EFFECTIVENESS OF THE FORGET GATE
IndRNN
2018
4
Simple Recurrent Units for Highly Parallelizable Recurrence
SRU
2018
5
Transformer
AI合成部分(GAN)
1
Improved Training of Wasserstein GANs
RNN.WGAN
2017
2
TACOTRON: TOWARDS END-TO-END SPEECH SYNTHESIS
Tacotron与Tacotron-2
2017
4
AttGAN: Facial Attribute Editing by Only Changing What You Want
AttGAN
2018
5
DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks
DeblurGAN
2018
6
NATURAL TTS SYNTHESIS BY CONDITIONING WAVENET ON MEL SPECTROGRAM PREDICTIONS
Tacotron&Tacotron-2
2018
目标分割(SEG)
7
Fully Convolutional Networks for Semantic Segmentation
目标分割
FCN
8
U-Net:Convolutional Networks for Biomedical
目标分割
U-Net
9
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
目标分割
Deeplabv1
10
Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
目标分割
Deeplabv2
11
Rethinking Atrous Convolution for Semantic Image Segmentation
目标分割
Deeplabv3
12
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
目标分割
Deeplabv3+
13
Mask R-CNN
目标分割
Mask R-CNN
14
Feature Pyramid Networks for Object Detection
目标分割
FPN
15
Focal Loss for Dense Object Detection
目标分割
RetinaNet
目标检测(OBJ)
1
Rich feature hierarchies for accurate object detection and semantic segmentation
目标检测
R-CNN
2
Fast R-CNN
目标检测
Fast R-CNN
3
Faster R-CNN:Towards Real-Time Object
目标检测
Faster R-CNN
4
Mask R-CNN
目标检测
Mask R-CNN
5
SSD:Single Shot MultiBox Detector
目标检测
SSD
6
Feature Pyramid Networks for Object Detection
目标分割
FPN
7
Focal Loss for Dense Object Detection
目标分割
RetinaNet
8
Bag of Freebies for Training Object Detection Neural Networks
目标分割
9
You Only Look One-Unified, Real-Time Object Detection
目标分割
YOLOv1
10
YOLO9000:Better, Faster, Stronger
目标分割
YOLOv2
11
YOLOv3:An Incremental Improvement
目标分割
YOLOv3
12
YOLOv4:Optimal Speed and Accuracy of Object Detection
目标分割
YOLOv4
13
PP-YOLO:An Effective and Efficient Implementation of Object Detector
目标分割
PP-YOLO
14
PP-YOLOv2:A Practical Object Detector
目标分割
PP-YOLO2
图像分类(CLAS)
1
Gradient-based Learning Applied to Document Recognition
LeNet
2
ImageNet Classification with Deep Convolutional
AlexNet
3
Visualizing and Understanding Convolutional Networks
ZFNet
4
VERY DEEP CONVOLUTIONAL
VGG
5
Going deeper with convolutions
GoogleNet,Inceptionv1
6
Batch Normalization-Accelerating Deep Network Training b
7
Rethinking the Inception Architecture for Computer Vision
Inceptionv3
8
Inception-v4:Inception-ResNet and the Impact of Residual Connections on Learning
Inception-v4
9
Xception:Deep Learning with Depthwise Separable Convolutions
Xception
10
Deep Residual Learning for Image Recognition
ResNet
11
Aggregated Residual Transformations for Deep Neural Networks
ResNeXt
12
Densely Connected Convolutional Networks
DenseNet
13
Learning Transferable Architectures for Scalable Image Recognition
NASNet-A
14
MobileNets-Efficient Convolutional Neural Networks for Mobile Vision
SENet
15
MobileNets- Efficient Convolutional Neural Networks for Mobile Vision
MobileNets-v1
16
MobileNetV2:Inverted Residuals and Linear Bottlenecks
MobileNets-v2
17
Searching for MobileNetV3
MobileNets-v3
18
ShuffleNet:An Extremely Efficient Convolutional Neural Network for Mobile
ShuffleNet
19
ShuffleNet V2:Practical Guidelines for Efficient
ShuffleNet-v2
20
Bag of Tricks for Image Classification with Convolutional Neural Networks
21
EfficientNet:Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet
22
EfficientNetV2:Smaller Models and Faster Training
EfficientNet-v2
23
CSPNET-A NEW BACKBONE THAT CAN ENHANCE LEARNING
CSPNET-A
24
High-Performance Large-Scale Image Recognition Without Normalization
NFNets
25
AN IMAGE IS WORTH 16X16 WORDS-T RANSFORMERS FOR I MAGE R ECOGNITION AT S CALE
Vision Transformer
26
Training data-efficient image transformers
DeiT
27
Swin Transformer-Hierarchical Vision Transformer using Shifted Windows
Swin Transformer
自然语言处理(NLP)
1
Attention Is All You Need
注意力机制
Attention
多模态(MultiModal Learning)
2022
BLIP: Bootstrapping Language-Image Pre-training
视觉语言预训练
Introduced by Li et al.
2022
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
使用冻结图像编码器和大型语言模型进行引导语言图像预训练
2023
大语言模型(Large Language Models)
OPT: OPT : Open Pre-trained Transformer Language Models
开放预训练的 Transformer 语言模型
GPT-v1:Improving Language Understanding by Generative Pre-Training
GPT&LLM
GPT-v2:Language Models are Unsupervised Multitask Learners
GPT&LLM
GPT-v3:Language Models are Few-Shot Learners
GPT&LLM
GPT-v4:GPT-4 Technical Report
GPT&LLM
Last updated